All Toric L . C . I . - Singularities Admit
نویسندگان
چکیده
منابع مشابه
All Toric L.C.I.-Singularities Admit Projective Crepant Resolutions
It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphisms in all dimensions. In the present paper we extend this result to the entire class of toric l.c.i.-singularities. Our proof makes use of Nakajim...
متن کاملAll Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions
For Gorenstein quotient spaces C d =G, a direct generalization of the classical McKay correspondence in dimensions d 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstei...
متن کاملCombinatorial Method in Adjoint Linear Systems on Toric Varieties
For nonsingular varieties, the one-dimensional case is an easy fact in curve theory. The two-dimensional case follows from the work of Reider [16]. In higherdimensional cases, (I) is known for n = 3 [3] and n = 4 [8], and by [1] we know that KX + 1 2 (n2 +n+ 2)D is generated by global sections for all n. Less is known about (II) with one exception: if D is already very ample, then (I) and (II) ...
متن کاملAll Abelian Quotient C.I.-Singularities Admit Projective Crepant Resolutions in All Dimensions
For Gorenstein quotient spaces C/G, a direct generalization of the classical McKay correspondence in dimensions d ≥ 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstein...
متن کاملResolving 3-dimensional toric singularities
This paper surveys, in the first place, some basic facts from the classification theory of normal complex singularities, including details for the low dimensions 2 and 3. Next, it describes how the toric singularities are located within the class of rational singularities, and recalls their main properties. Finally, it focuses, in particular, on a toric version of Reid’s desingularization strat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999